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Abstract

Nonlinear edge preserving smoothing often is performed prior to medical image segmenta-

tion. The goal of the nonlinear smoothing is to improve the accuracy of the segmentation

by preserving changes in image intensity at the boundaries of structures of interest, while

smoothing random fluctuations due to noise in the interiors of the structures. Methods in-

clude median filtering and morphology operations such as gray scale erosion and dilation, as

well as spatially varying smoothing driven by local contrast measures.

Rather than irreversibly altering the image data prior to segmentation, the approach

described here has the potential to unify nonlinear edge preserving smoothing with segmen-

tation based on differential edge detection at multiple scales. The analysis of n-D image

data is decomposed into independent 1-D problems that can be solved relatively quickly.

Smoothing in various directions along 1-D profiles through n-D data is driven by a measure

of local structure separation, rather than by a local contrast measure. Isolated edges are

preserved independent of their contrast, given an adequate contrast to noise ratio. In addi-

tion, analytic expressions are obtained for the derivatives of the edge preserved 1-D profiles.

Using these expressions, multidimensional edge detection operators such as the Laplacian

or the second derivative in the direction of the image intensity gradient can be composed

and used to segment n-D data. The smoothing and segmentation algorithms are applied to

simulated 4-D medical image data.
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1 Introduction

Nonlinear edge preserving smoothing often is performed prior to medical image segmenta-

tion. The goal of the nonlinear smoothing is to improve the accuracy of the segmentation

by preserving changes in image intensity at the boundaries of structures of interest, while

smoothing random fluctuations due to noise in the interiors of the structures. Methods

include median filtering and morphology operations such as gray scale erosion and dila-

tion [1], as well as spatially varying smoothing driven by local contrast measures [2, 3]. By

comparison, linear smoothing via spatially invariant convolution uniformly blurs structure

boundaries, as well as noise. The benefits of noise reduction can be offset by deformations

of the boundaries that adversely affect the accuracy of the subsequent segmentation.

Rather than irreversibly altering the image data prior to segmentation, the approach

described here has the potential to unify nonlinear edge preserving smoothing with segmen-

tation based on differential edge detection at multiple scales. The analysis of multidimen-

sional (n-D) image data is decomposed into independent 1-D problems that can be solved

relatively quickly. The elementary 1-D smoothing algorithm is described in Section 2 and

is generalized to arbitrary dimension in Section 3. Smoothing in various directions along

1-D profiles through n-D data is driven by a measure of local structure separation, rather

than by a local contrast measure. Isolated edges are preserved independent of their contrast,

given an adequate contrast to noise ratio (CNR).

In addition, analytic expressions are obtained for the derivatives of the edge preserved

1-D profiles. Using these expressions and the methods described in Section 3, multidimen-

sional edge detection operators such as the Laplacian or the second derivative in the direction

of the image intensity gradient can be composed and used to segment n-D data. Computer

simulations are used in Section 4 to evaluate the performance of the 1-D smoothing algorithm

and 4-D versions of the n-D smoothing and segmentation algorithms. Preliminary results of

a 3-D version of the n-D smoothing algorithm were presented in the conference report [4].

Potential applications of these methods include 4-D spatiotemporal segmentation of res-
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piratory gated cardiac positron emission tomography (PET) transmission images to improve

the accuracy of attenuation correction [5, 6], and 4-D spatiotemporal segmentation of dy-

namic cardiac single photon emission computed tomography (SPECT) images to facilitate

unbiased estimation of time activity curves and kinetic parameters for left ventricular vol-

umes of interest [7].

2 The 1-D Smoothing Algorithm

2.1 Recursive Multiscale Blending

Given linearly smoothed versions of a 1-D signal f(x) and its first two derivatives at J scales,

one can perform nonlinear edge preserving smoothing as follows. The linearly smoothed

versions of f(x) are denoted by f̄(x, aj), and the linearly smoothed first and second derivatives

are denoted by f̄(1)(x, aj) and f̄(2)(x, aj), respectively, for j = 1, . . . , J . The scale coordinate a

controls the width of the convolution kernels used in the linear filtering. The kernels are

based on the uniform cubic B-spline basis function and its first two derivatives [8, 9]. The

cubic B-spline has a support of 4a and approximates a Gaussian with a standard deviation,

σ, of
√

1/3 a. Dyadic sampling of the scale coordinate a is used, yielding aj = 2j−1a1.

The nonlinearly smoothed versions of f(x), denoted by f̃(x, aj), are obtained by recursively

blending the linearly smoothed versions:

f̃(x, aj) =




f̄(x, a1) j = 1

[1− Cj(x)] f̃(x, aj−1) + Cj(x)̄f(x, aj) j = 2, . . . , J.

(1)

The blending functions {Cj(x); j = 2, . . . , J} play a role similar to that of the spatially vary-

ing diffusion coefficients used in typical implementations of edge preserving smoothing via

inhomogeneous diffusion (e.g., [2]). When Cj(x0) = 0, smoothing stops in the neighborhood

of x0 and f̃(x0, aj) remains unchanged from the value f̃(x0, aj−1) obtained using nonlinear

smoothing at the previous, finer scale. When Cj(x0) = 1, smoothing is unabated and f̃(x0, aj)
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Figure 1: Augmented scale-space fingerprint

for an isolated edge of width four and a CNR

of 2.5. Solid fingerprint lines depict the zero-

crossing locations of f̄(2)(x, a) (i.e., edge and

ledge locations) over a continuum of scales.

Dashed lines depict the zero-crossing loca-

tions of f̄(1)(x, a) (i.e., ridge and trough lo-

cations). The noiseless signal is shown with

the noisy signal below the fingerprint.

is set to the value f̄(x0, aj) obtained using linear smoothing at the current, coarser scale.

2.2 Defining the Multiscale Blending Functions

The multiscale blending functions {Cj(x); j = 2, . . . , J} are defined via the following analysis

of the augmented scale-space fingerprint for f(x). The augmented scale-space fingerprint

(Figure 1) is a graphical depiction of the locations of the zero-crossings of the first two

derivatives of the linearly smoothed signal as a function of scale [9]. At a particular scale aj,

each zero-crossing location of f̄(2)(x, aj) is labeled as either a local maximum (edge) or local

minimum (ledge) in gradient magnitude, depending on its proximity to nearby zero-crossing

locations of f̄(1)(x, aj) (i.e., ridges and troughs). For each of the resulting edge locations {xjk;

k = 1, . . . , Kj}, the distance ∆xjk separating the ridge, trough, or ledge on either side of the

edge is calculated. The blending function Cj(x) is then assigned values ranging between zero

and one at the edge locations, based on the separation distances {∆xjk; k = 1, . . . , Kj}.
The value assigned to Cj(x) at the edge location xjk is denoted by γjk and is selected using

a monotonically decreasing function that maps larger separation distances to smaller values.

This heuristic mapping is based on the observation that the separation distance ∆x tends

to be larger for an isolated true edge, than it is for a random second derivative zero-crossing
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associated with noise (Figure 1). For simplicity, a piecewise linear mapping is used:

γjk =




1 ∆xjk < αj

1− ∆xjk−αj

βj−αj
αj ≤ ∆xjk < βj

0 βj ≤ ∆xjk,

(2)

where αj and βj are selected as follows. The separation distances {∆xjk; k = 1, . . . , Kj} are

first sorted in ascending order, and then αj and βj are set to values corresponding to a lower

and an upper percentile of the sorted values, respectively. The lower and upper percentiles

can be selected based on the expected numbers of true and random edges at the jth scale.

In practice, the expected number of random edges due to noise in the linearly smoothed

signal f̄(x, aj) will vary roughly inversely with the scale aj, while the number of isolated true

edges will remain roughly constant.

Given the values {γjk; k = 1, . . . , Kj} at the edge locations, the blending function Cj(x)

can be defined for all x as follows. The blending function Cj(x) must be continuous through

at least its second derivative, in order for the nonlinearly smoothed signal f̃(x, aj) to have

continuous first and second derivatives. Rearranging the factors in equation (1) and denoting

the first and second derivatives of Cj(x) by C
(1)
j (x) and C

(2)
j (x), respectively, one obtains

the following expressions for the first and second derivatives of the nonlinearly smoothed

signal f̃(x, aj):

f̃(1)(x, aj) =




f̄(1)(x, a1) j = 1

f̃(1)(x, aj−1) + Cj(x)
[
f̄(1)(x, aj)− f̃(1)(x, aj−1)

]

+ C
(1)
j (x)

[
f̄(x, aj)− f̃(x, aj−1)

] j = 2, . . . , J
(3)

f̃(2)(x, aj) =




f̄(2)(x, a1) j = 1

f̃(2)(x, aj−1) + Cj(x)
[
f̄(2)(x, aj)− f̃(2)(x, aj−1)

]

+ 2C
(1)
j (x)

[
f̄(1)(x, aj)− f̃(1)(x, aj−1)

]

+ C
(2)
j (x)

[
f̄(x, aj)− f̃(x, aj−1)

] j = 2, . . . , J.
(4)
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To achieve the desired continuity in a relatively straightforward fashion, the blending

function Cj(x) is defined to be the piecewise quartic function

Cj(x) =




γj1 x < xj1

γj(k−1) +
[
γjk − γj(k−1)

]
Sjk(x) xj(k−1) ≤ x < xjk; k = 2, . . . , Kj

γjKj
xjKj

≤ x,

(5)

where Sjk(x) is a smooth step function obtained by integrating the uniform cubic B-spline

basis function on which the linear smoothing is based:

Sjk(x) =

∫ x

xj(k−1)

1

vjk

Π∗4
(

u− ujk

vjk

)
du, (6)

where ujk =
[
xj(k−1) + xjk

]
/2, vjk =

[
xjk − xj(k−1)

]
/4, and Π∗4(u) denotes the uniform cubic

B-spline basis function. The function Sjk(x) is zero at x = xj(k−1) and increases monoton-

ically to one at x = xjk. It is continuous through its third derivative, and its first through

third derivatives are all zero at both x = xj(k−1) and x = xjk. Thus, using this construction

one obtains a blending function Cj(x) that ranges between zero and one and is continuous

through its third derivative. In Section 4.1, this 1-D smoothing algorithm is applied to a

simulated 1-D edge.

3 The n-D Smoothing and Segmentation Algorithms

Edges can be preserved in multidimensional image data by applying the 1-D smoothing

algorithm described in Section 2 independently along the coordinate axis directions, as well

as along the diagonal directions of the 2-D planes spanned by the coordinate axes, and

averaging the results. This builds on the work described in [2], in which processing was

performed only along the coordinate axis directions. In Section 4.2, a 4-D version of the

smoothing algorithm is applied to simulated respiratory gated PET transmission images.

By processing the diagonal directions, additional information is obtained that allows one

to characterize the first and second order differential properties of the data in any direction.
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Using this additional information, multidimensional edge detection operators such as the

Laplacian or the second derivative in the direction of the image intensity gradient can be

composed and used to segment the data as follows.

The n-D data array is denoted by f(x), where x = [x1 · · · xn]T is the position vector

for the domain of the data and “[ ]T” denotes the matrix transpose. The 1-D profile passing

through the point x0 in the direction v0 is denoted by

fx0,v0(s) = f(x0 + sv0), (7)

where v = [v1 · · · vn]T is a unit vector and s is an arc length parameter.

The relationships between the first and second derivatives along the 1-D profile fx,v(s)

and the first and second order partial derivatives of the n-D data f(x) are

dfx,v

ds
= v · ∇f =

[
v1 · · · vn

]



∂ f
∂x1

...

∂ f
∂xn


 = vTg (8)

d2fx,v

ds2
= v · ∇[v · ∇f] =

[
v1 · · · vn

]



∂2f
∂x1

2 · · · ∂2f
∂x1∂xn

...
...

∂2f
∂x1∂xn

· · · ∂2f
∂xn

2







v1

...

vn


 = vTHv, (9)

where g(x) is the gradient vector and the matrix H(x) of second order partial derivatives is

the Hessian matrix. For convenience one can write vTHv as the inner product wTh of the

(n2+n
2

)-element vectors

w =

[
v2

1 2v1v2 · · · 2v1vn v2
2 2v2v3 · · · 2v2vn · · · v2

n−1 2vn−1vn v2
n

]T

(10)

h(x) =

[
∂2f

∂x1
2

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2

2
∂2f

∂x2∂x3
· · · ∂2f

∂x2∂xn
· · · ∂2f

∂xn−1
2

∂2f
∂xn−1∂xn

∂2f
∂xn

2

]T

. (11)

Given first and second derivative estimates from 1-D profile processing along each co-

ordinate axis direction and along the diagonal directions of the 2-D planes spanned by the
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coordinate axes (for a total of n2 directions), one can form least squares estimates of the gra-

dient vector g(x) and the vector h(x) of Hessian matrix elements as follows. The n2 direction

vectors for the 1-D profiles and the corresponding w vectors are stored in the matrices

V =




vT
1

...

vT
n2


 W =




wT
1

...

wT
n2


 . (12)

The first and second derivative estimates along the 1-D profiles are stored in the vectors

f (1)(x) =




dfx,v1

ds

...

dfx,v
n2

ds


 f (2)(x) =




d2fx,v1

ds2

...

d2fx,v
n2

ds2


 . (13)

The vectors ĝ(x) and ĥ(x) are desired, which minimize the weighted sums of squared errors

χ2
1 =

[
f (1) −Vĝ

]T
Ψ1

[
f (1) −Vĝ

]
(14)

χ2
2 =

[
f (2) −Wĥ

]T

Ψ2

[
f (2) −Wĥ

]
, (15)

where Ψ1(x) and Ψ2(x) are symmetric weighting matrices. Typically, Ψ1(x) and Ψ2(x) are

either identity matrices for unweighted least squares estimates, or the respective inverses of

the covariance matrices for f (1)(x) and f (2)(x) for weighted least squares estimates.

The resulting least squares estimates for the gradient vector g(x) and the vector h(x) of

Hessian matrix elements are

ĝ(x) =
[
VTΨ1V

]−1
VTΨ1f

(1) (16)

ĥ(x) =
[
WTΨ2W

]−1
WTΨ2f

(2). (17)

Using these estimates of the gradient vector and the elements of the Hessian matrix, one can

compose multidimensional edge detection operators such as the Laplacian,
∑n

p=1
∂2f

∂xp
2 , or the

second derivative in the direction of the gradient, weighted by the squared magnitude of the

gradient,
∑n

p=1

∑n
q=1

∂ f
∂xp

∂ f
∂xq

∂2f
∂xp∂xq

. In Section 4.3, 4-D Laplacian operators are composed

and used to segment simulated respiratory gated PET transmission images.
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Figure 2: Results for a simulated 1-D edge of width four and a CNR of 2.5. In (a),

the dashed line and the solid line depict the linear and nonlinear smoothing results,

respectively, at the scale a4 = 8. The dotted line depicts the unsmoothed signal, which

is shown also in Figure 1 with its scale-space fingerprint and the noiseless signal. The

blending functions used to perform the nonlinear smoothing are shown in (b).

4 Computer Simulations

4.1 Smoothing a 1-D Edge

To evaluate the performance of the 1-D smoothing algorithm, Gaussian white noise was

added to a simulated signal composed of a single ramp transition of width four and a CNR

of 2.5 (Figure 1). Linear smoothing was performed at four scales using uniform cubic B-

spline basis functions with scale parameters a1 = 1, a2 = 2, a3 = 4, and a4 = 8. Nonlinear

smoothing was performed at the scales a2, a3, and a4, using equation (1). Results at the

scale a4 are shown in Figure 2a.

The blending functions C2(x), C3(x), and C4(x) shown in Figure 2b were defined using

values for β2, β3, and β4 in equation (2) corresponding to the 94th, 89th, and 80th percentiles

of the sorted separation distances, respectively. The upper percentile for β4 was selected so
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that four out of every five edges would undergo some smoothing at the coarsest scale, a4 = 8.

Then, using the heuristic that the expected number of random edges due to noise varies

roughly inversely with scale, the upper percentiles for β3 and β2 were selected so that eight out

of nine edges and 16 out of 17 edges would undergo some smoothing at the finer scales a3 = 4

and a2 = 2, respectively. The lower percentiles associated with α2, α3, and α4 in equation (2)

were selected to be one-half of the upper percentiles, i.e., the 47th, 44th, and 40th percentiles,

respectively.

The nonlinear smoothing yielded a sharper edge than did the linear smoothing, and

provided comparable smoothing away from the edge (Figure 2a). Because of the high noise

level, the apparent position of the edge was shifted to the right. The blending functions

consistently reached their minimum near the edge, thus reducing the amount of smoothing

in the neighborhood of the edge (Figure 2b). Away from the edge, the blending functions

increased, thus increasing the amount of smoothing.

4.2 Smoothing 4-D Respiratory Gated PET Transmission Images

A 4-D version of the n-D smoothing algorithm was applied to simulated respiratory gated

PET transmission images (Figure 3a) generated using the Mathematical Cardiac Torso

(MCAT) phantom [10]. The 4-D image array was composed of 40 contiguous 5 mm-thick

transverse slices at 15 respiratory phases. Each transverse slice had 80×80 pixels with pixel

size 5×5 mm. Diaphragm and heart motion of 15 mm in the superior-inferior direction was

simulated, in conjunction with chest wall diameter changes of 9.8 mm in the left-right di-

rection and 20 mm in the anterior-posterior direction. The attenuation coefficients for soft

tissue and lung were 0.093 cm−1 and 0.027 cm−1, respectively. Gaussian white noise with a

standard deviation of 0.019 cm−1 was added to the images to yield a CNR of 5 at the air-soft

tissue boundary and a CNR of 3.5 at the soft tissue-lung boundaries (Figure 3b).

The 1-D smoothing algorithm was applied independently along the x, y, z, and t spa-

tiotemporal coordinate axis directions of the noisy 80×80×40×15 dataset, using the same

9
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(a) (b)

0.16 cm−1

−0.06

(c) (d) (e)

0.16 cm−1

−0.06

Figure 3: Smoothing results for simulated 4-D respiratory gated PET transmission

images. (a) Original noiseless images; (b) original noisy images; (c) average of large

scale (1×35) 1-D linear smoothing operators applied along the four coordinate axis

directions and twelve diagonal directions; (d) large scale nonlinear smoothing; and

(e) 7×7×7×7 linear smoothing. The top, middle, and bottom rows show transverse,

coronal, and sagittal cross sections, respectively, through data for respiratory phase 8.
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(a) (b) (c)

0.06 cm−1

−0.06

Figure 4: Differences between (a) Figures 3c and 3a, (b) Figures 3d and 3a, and (c)

Figures 3e and 3a.

linear filters that were used to process the simulated 1-D edge in Section 4.1. Six diagonal

directions in the xy (transverse), xz (coronal), and yz (sagittal) spatial planes were also

processed, along with six diagonal directions in the xt, yt, and zt spatiotemporal planes.

Figure 3c shows the results of simply averaging the outputs of the 16 large scale (1×35)

1-D linear filters, corresponding to the scale parameter a4 = 8. This linear smoothing opera-

tion was effective at reducing the noise, at the expense of blurring the edges and biasing the

attenuation coefficients because of the relatively long support of the 1-D filters. Figure 4a

shows the difference between Figure 3c and the noiseless images in Figure 3a. The root mean

square (RMS) difference with respect to the noiseless images was reduced to 0.013 cm−1, from

the value 0.019 cm−1 for the noisy images in Figure 3b.

Figure 3d shows the results of nonlinear smoothing at the scale a4 = 8. The multiscale

blending functions C2(x)–C4(x) were defined using the same values for β2–β4 and α2–α4 in

equation (2), which were used to process the simulated 1-D edge in Section 4.1. Compared

to the linear smoothing, this nonlinear smoothing operation was less effective at reducing

11
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the noise, as expected. However, the edges are sharper and there is less bias, as desired.

Figure 4b shows the difference between Figure 3d and the noiseless images in Figure 3a.

Overall, the RMS difference with respect to the noiseless images improved to 0.0098 cm−1.

For comparison, Figure 3e shows the results of linear smoothing with a 7×7×7×7 sepa-

rable filter composed from the 1-D filter corresponding to the scale parameter a1 = 1. Com-

pared to the nonlinear smoothing, this separable filtering operation was more effective at

reducing the noise, at the expense of adding spatiotemporal correlation to the noise. The

edges are also more blurred, but there is less bias in the interiors of the structures. Figure 4c

shows the difference between Figure 3e and the noiseless images in Figure 3a. The RMS

difference with respect to the noiseless images improved further, to 0.0080 cm−1.

The multidirectional 1-D linear and nonlinear smoothing results shown in Figures 3c

and 3d were obtained using an average of 11 minutes of processing for each of the 16 di-

rections, on a 195 MHz MIPS R10000-based Silicon Graphics workstation. The processing

of the 16 directions can be done in parallel. Because each individual 1-D profile in each

direction can be processed independently, massive parallelization is also possible.

4.3 Segmenting 4-D Respiratory Gated PET Transmission Images

In conjunction with the multidirectional 1-D processing described in Section 4.2, the first

and second derivatives of the nonlinearly smoothed 1-D profiles were calculated using equa-

tions (3) and (4). Using the methods described in Section 3, 4-D Laplacian edge detection

operators were composed and applied to the linearly and nonlinearly processed results shown

in Figures 3c and 3d. These 4-D Laplacian calculations took a total of 7 minutes on a

195 MHz MIPS R10000-based Silicon Graphics workstation. In addition, the 4-D Laplacian

was calculated for the results of the separable processing shown in Figure 3e.

For respiratory phase 8, 3-D models for the Laplacian zero-crossing surfaces were con-

structed automatically in less than one minute using the methods described in [5]. Distinct

torso and lung surfaces were obtained for each of the three processing methods. The torso
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 5: Anterior coronal views of wireframe models for lung surfaces segmented from

simulated 4-D respiratory gated PET transmission images. (a) Known lung surfaces

extracted from noiseless data shown in Figure 3a; (b, c, d) surfaces extracted from

data shown in Figures 3c, 3d, and 3e, respectively; and (e, f, g) use of transparency

to show significant portions of surfaces in (b, c, d), respectively.

surfaces agreed well with the known torso surfaces. Anterior coronal views of the wire-

frame models for the lung surfaces are shown in Figure 5. As a reference, Figure 5a shows

the known lung surfaces, which were extracted directly from the noiseless images using a

threshold equal to the average of the lung and soft tissue attenuation coefficients.

For the multidirectional 1-D linear processing results shown in Figure 3c, two distinct

lung surfaces were obtained (Figure 5b). The segmentation for one lung “leaks” into the
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abdomen, but otherwise the lung models agree qualitatively with the known lung surfaces.

For the multidirectional 1-D nonlinear processing results shown in Figure 3d and the

separable 4-D processing results shown in Figure 3e, the lungs are joined together and the

segmentations leak more extensively (Figures 5c and 5d, respectively).

Figures 5e, 5f, and 5g show the results of modulating the transparencies of the wireframes

shown in Figures 5b, 5c, and 5d, respectively, by estimates of the local image intensity

gradient magnitude. For each of the three processing methods, the significant portions of

the surfaces associated with a relatively large image intensity gradient magnitude are now

seen to agree qualitatively with the known lung surfaces.

5 Future Directions

The computer simulations in Section 4 demonstrate that nonlinear edge preserving smoothing

and segmentation of 4-D medical images can be performed in a timely manner on a work-

station. The simulation results suggest that multidirectional 1-D processing and analysis

at multiple spatiotemporal scales can provide rich mathematical and geometric information

about possible structures of interest in the images.

Additional work is needed to optimize the multiscale blending functions to balance reduc-

tions in variance with increases in bias when processing tomographic image reconstructions.

Further study is needed to understand the factors that affect the accuracy of segmentation.
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